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• Coarse-to-fine flow prediction

• Backward warping

• Cost volume

• Flow decoder

• 5 densely-connected convolutional layers

• Flow prediction and refinement

• Refine flow using a context network [1] 

Optical flow estimator

• Loss function
• Multi-scale endpoint error

• Temporal ambiguity
• Averaging does not preserve temporal order

• Estimating the correct flow direction is an intractable problem

• Measuring the quality of the predicted flows

min/max 

Network training

Experiments and Results

Feature encoder
• Top-down feature extraction

• Feed-forward CNN network with 6 

convolutional blocks

Dataset
• Synthetic scene blur dataset

• Monkaa [6]

• Blur synthesis via interpolation + averaging

• Real scene blur dataset
• GOPRO [7] and Need for Speed (NfS) [8]

• Blur synthesis by averaging 7 consecutive 

frames

• Other blur datasets
• Blur Detection [9] Dataset and SONY RX V [10] 
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Qualitative results on motion-blurred images from different datasets 

Quantitative results

References

Analysis

• Motion blur     Motion flow
• For heterogeneous blur 

removal 

• Gong et al. [2]
• Classification task

• Constraints on direction & 

magnitude

• Simulated synthetic blurs

• Ours
• Regression task

• No motion constraints

• Real high-speed video 

blurs

Blurry image Gong et al. Ours

• Our approach generalizes 

better

Comparison with motion flow estimation approaches

Blurry image Jin et al.   flow Ours Pseudo-GT

Comparison with optical flow from restored frames

• Jin et al.[3]     flow [1] 
• Blur artifacts

• Static scene: 

• Dynamic scene: 

• Ours
• Static scene: 

• Dynamic scene:









• Problem formulation
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Moving object segmentation in a blurry scenario

• FusionSeg model [4] - Combine appearance and motion information

• 3 streams (appearance, motion and fusion of the two)

• Object boundaries and appearance cues are corrupted by blur
• Inaccurate segmentation masks

• Failure to segment small objects

• Optical flow predicted by our network comes to rescue

Motion-blur removal via non-blind deconvolution

• Comparison with previous works [2,5]

Network components
• Feature decoding

• Direct flow estimation from encoded features

• U-net network [1]

• 32% EPE increase 

• Motion decoders
• Both STN and feature refining block (RB) boost network performance

• Motion estimated by our approach results in sharper images

Table: Ablation on different network components Table: Ablation on symmetric motion and weight sharing
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• Temporal aggregate of continuous latent frames due to 

sudden camera shake or dynamic motion of objects in the 

scene during exposure time of a camera

Continuous latent frames

• In photography
• Artistic effect

Blurry image

• In Games
• Adds realism and cinematic look

• In most computer vision research
• Unwanted artifact

• Image and Video deblurring

Goal 
• Our work aims to explore the potential of motion blur

• Can a deep neural network learn motion from blur? What are its challenges?

• Can the learned motion be useful in computer vision (CV) applications?

Applications of motion blurMotion blur

Feature decoder
• Bottom-up feature decoding 

• Decode features by learning motion from 

blur

• Spatial Transformer Network (STN) [11]

• 2D Euclidean transformation 

• Non-local motion

• Feature refining block

• Compensate for locally-varying 

motion

• 5 densely-connected convolutional 

layers
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