

SRN \oplus DAIN | 29.966 0.870 | 29.245 0.828

30.045 0.867 29.074 0.822

32.202 0.914 31.019 0.894

DAIN

SRN

Ours

Interpolate and extrapolate all latent frames in a single pass

✓ Joint interpolation and extrapolation tasks by addressing temporal ambiguity

in a single forward pass

✓ Robust to large blurs

Motion-blurred Video Interpolation and Extrapolation

Dawit Mureja Argaw, Junsik Kim, Francois Rameau, In So Kweon **Robotics and Computer Vision Laboratory, KAIST**

• Our approach outperforms related works by a significant margin on motion-blurred video interpolation and gives a competitive performance on video deblurring task

Jin-SloMo (2019) | 30.321 0.878

Ours

				Table 4: Middle frame deblurring					
parison with previous works					GoI	Pro	Sony I	RX V	
Goł	Pro	Sony l	RX V	Method	PSNR	SSIM	PSNR	SSIM	
PSNR	SSIM	PSNR	SSIM	DVD (Su <i>et al.</i>) DeepDeblur (Nah <i>et al.</i>)	26.547	0.742	28.937	0.805	
26.848	0.785	25.785	0.735	SRN (Tao <i>et al.</i>)	33.382	0.007	30.827	0.851	
<u>30.321</u> 32.202	0.877 0.878 0.914	27.348 29.267 31.019	0.779 0.816 0.894	Jin-Seq (2018) Jin-SloMo (2019) Ours	31.442 31.318 32.994	0.906 0.900 0.927	29.752 30.325 31.650	0.812 0.829 0.904	
								···	

$$\langle \hat{I}_{t_0}^l, \hat{I}_{t_1}^l \rangle = F(\{V_{t_0}^l, V_{t_1}^l\} || \{\hat{I}_{t_0}^{l+1}, \hat{I}_{t_1}^{l+1}\})$$
• Non-middle frames
• By back-warping the decoded reference features with the

corresponding estimated flows

$$W = \operatorname{warp}(V_{t_0}^l, \hat{f}_{s \to t_0}^l) || \operatorname{warp}(V_{t_1}^l, \hat{f}_{s \to t_1}^l)$$

$$\hat{I}_s^l = F\{W || V_s^l || \hat{I}_s^{l+1}\}$$
where $s \in \{t_0 = N/2, \dots, t_1 + N/2\}$ (t_0, t_1)

where
$$s \in \{t_0 - N/2, ..., t_1 + N/2\} \setminus (t_0, t_1)$$

Optical flow estimation Directly regressing frames without

- estimating motion
- Subpar network performance
- Temporal coherence can't be
- ensured

Feature decoding

- Local motion decoder can successfully capture both local and global motions
- Explicitly modelling global motion with STN boosted network performance

- CVPR 2018 (SloMo)

Blurry input

AAAI-21 Feb. 2-9

This work was supported by NAVER Labs

Qualitative analysis of interpolated frames in comparison with related works SRN + DAINJin-SloMo

Qualitative analysis of extrapolated frames

Ablation studies

			GoPro		Sony RX V		
STN	\mathcal{D}_m	Flow	PSNR	SSIM	PSNR	SSIM	
✓ ✓	\ \	★ flow fix	29.509 30.219	$0.836 \\ 0.870$	28.316 29.163	$\begin{array}{c} 0.805\\ 0.812\end{array}$	
✓ × ✓	×	\ \ \	28.789 31.317 32.202	0.855 0.893 0.914	27.467 30.125 31.019	0.798 0.857 0.894	

References

[1]. Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video frame interpolation. CVPR2019 (DAIN)

[2]. Tao, X.; Gao, H.; Shen, X.; Wang, J.; and Jia, J. Scale recurrent Network for Deep Image Deblurring, CVPR'18 (SRN)

., Favaro, P.: Learning to extract flawless slow motion from blurry videos, CVPR 2019 (Jin-Slomo)

[4]. Shen,W.; Bao,W.; Zhai,G.; Chen,L.; Min,X.; and Gao,Z. Blurry Video Frame Interpolation, CVPR 2020 (BIN) [5]. Jaderberg, M.; Simonyan, K.; Zisserman, A.; et al. Spatial transformer networks, NIPS 2015 (STN)

[6]. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring, CVPR 2017 (DeepDeblur)

[7]. Su, S.; Delbracio, M.; Wang, J.; Sapiro, G.; Heidrich, W.; and Wang, O. Deep Video Deblurring for Hand-held Cameras, CVPR 2017 (DVD)

[8]. Jin, M., Meishvili, G., Favaro, P.: Learning to extract a video sequence from a single motion-blurred image, CVPR 2018 (Jin-Seq)

[9]. Jiang, H.; Sun, D.; Jampani, V.; Yang, M.; Learned-Miller, E. G.; and Kautz, J. Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation,

[10]. Niklaus, S.; Mai, L.; and Liu, F. Video frame interpolation via adaptive separable convolution, ICCV 2017 (SepConv)

[11]. Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; and Brox, T. 2017. FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks, CVPR 2017 (FlowNet 2) [12]. Sun, D.; Yang, X.; Liu, M.-Y.; and Kautz, J. 2018. PWCNet: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume, CVPR 2018 (PWC-Net)

Ours $\underline{N}, \dots, \underline{I}_{t_0}, \dots, \underline{I}_{t_0+\frac{N}{2}}, \underline{I}_{t_1-\frac{N}{2}}, \dots, \underline{I}_{t_1}, \dots, \underline{I}_{t_1}$