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Abrupt motion of camera or objects in a scene result in a 

blurry video

• Contents in the video are degraded by blur

• Temporal gap between consecutive frames is relatively large

Recovering high quality video from a blurry video 

• Temporal upsampling
• Video Frame Interpolation

• Interpolated frames are 

blurry as well

• Visual enhancement
• Deblurring

• Temporal gap between 

frames is still large

Cascaded approaches

• Deblurring + Interpolation

• Interpolation + Deblurring 

• Not optimal
• Error propagation

• Motion smoothness can not be ensured

Goal
Our work proposes a novel and optimal 

framework for interpolating and extrapolating 

motion-blurred videos.

Proposed Architecture

Feature decoding
• Reference (middle) features are 

decoded directly from encoded features

• Bottom-up feature upsampling using 

deconvolution layers

Feature encoding
• Top-down feature extraction from each 

blurry input

• Feed-forward CNN network with 6 

convolutional blocks

Feature decoding
• Non-middle features are decoded by 

learning the global and local motion 

from encoded features

• Global motion decoding

• Spatial transformer network 

(STN) [5]

• Affine transformation parameter

• Local motion decoding

• To capture locally-varying 

motion

• CNN motion decoder
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Feature encoding and decoding

Optical flow estimation

Experiments and Results

• How do STNs and local motion decoders learn the correct 

motion to decode features? via optical flow supervision

Temporal ordering and Addressing temporal ambiguity

Cost volume

Flow decoder

X 2

Warp

Cost volume

Flow decoder

• Optical flow between the reference (middle) feature and non-

middle features within each blurry input

• Constraining these flows enforces our model to learn 

motion in a symmetric manner

• Optical flow between the reference (middle) feature of one 

input and non-middle features of the other input

Frame synthesis
• Decoded features and estimated 

flows are then used to interpolate and 

extrapolate frames

• Reference (Middle) frames

• Directly regressed from decoded 

reference features in a bottom-

up fashion

• Non-middle frames

• By back-warping the decoded 

reference features with the 

corresponding estimated flows

where

Dataset
• GOPRO [6]

• 33 videos at 240 fps

• Blurred image generated by averaging 7 

consecutive frames

• Sony RX V [3]
• 60 videos at 250 fps

• Blurred image generated by averaging 9 

consecutive frames

Metrics

• Peak signal-to-noise ratio (PSNR)

• Structural similarity index measure 

(SSIM)

Loss function

•Multi-scale photometric loss

•Multi-scale endpoint error

•Total loss

Qualitative analysis of interpolated frames in comparison with related works

Quantitative analysis
Optical flow estimation
• Directly regressing frames without 

estimating motion
• Subpar network performance

• Temporal coherence can’t be 

ensured

Feature decoding
• Local motion decoder can successfully 

capture both local and global motions

• Explicitly modelling global motion with 

STN boosted network performance

Table:  Ablation studies

Qualitative analysis of extrapolated frames

• Our approach outperforms related works by a significant margin on motion-blurred video interpolation and gives a competitive performance on video deblurring task

where , … ,

• Previous works

1. Deblur the reference frames

2. Recursively interpolate frames between the reference frames

• Ours

• Interpolate and extrapolate all latent frames in a single pass

Contribution

Blurry video interpolation

• Jin-Slomo [3] 
• Sequential optimization of deblurring and 

interpolation networks

• BIN [4]
• Joint optimization using an inter-pyramid recurrent network

Deblurring Video sequence restoration from blur

• Image / video deblurring • Temporal ambiguity - can not be extended to multiple frames
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Previous works

 Recursive approach for multi-frame 

interpolation

 Limited to small blurs 

 Can not be extended for extrapolation task 

due to temporal ambiguity

Our work

 Multi-frame interpolation from 2 blurry inputs 

in a single forward pass

 Robust to large blurs

 Joint interpolation and extrapolation tasks by 

addressing temporal ambiguity


